Targeting Drug Delivery to the Lungs by Inhalation
نویسنده
چکیده
Most drugs targeted to the respiratory tract are used for their local action. For example, ephidrine for nasal decongestion, beta-2 agonists for bronchodilatation, and inhaled steroids to suppress the inflammation seen in asthmatic airways. Since the drug is delivered directly to its required site, only a small quantity is needed for an adequate therapeutic response, and consequently there is a low incidence of systemic side effects compared with oral or intravenous administration. More recently, it has become apparent that the lining of the respiratory tract, from nasal mucosa to airways and alveoli, may be used for the absorption of a drug for its systemic effect. This route of administration may be particularly attractive if it avoids the metabolic destruction encountered when some drugs are administered by alternative routes (for instance, peptides and proteins are rapidly destroyed by peptidases when Oven by the oral route). If there is a lack ofclinical response to an aerosolized drug, it is important to question whether the drug has failed or whether delivery to the site of action is inadequate. To deliver therapeutic agents by inhalation to the lower respiratory tract, inhaled drug particles must have appropriate aerodynamic characteristics. In addition, the anatomy and pathophysiology of the patient's respiratory tract, mode of inhalation through the inhaler, and the characteristics of the inhalational device itself, may significantly affect drug deposition.
منابع مشابه
Evaluation of the Droplet Collapsibility in Inhalation Drug Delivery through a 3D Computational Study
Background: Several multiphase flow analyses have been developed to predict the fate of particles used in inhalation drug delivery; however, the collapse of droplets during their passage through respiratory tract has not been investigated. Objective: To assess the probability of droplet collapse in the upper respiratory tract.Methods: A 3D model of mouth-to-second generation airway after the tr...
متن کاملNanotechnology-based inhalation treatments for lung cancer: state of the art
Considering the challenges associated with conventional chemotherapy, targeted and local delivery of chemotherapeutics via nanoparticle (NP) carriers to the lungs is an emerging area of interest. Recent studies and growing clinical application in cancer nanotechnology showed the huge potential of NPs as drug carriers in cancer therapy, including in lung carcinoma for diagnosis, imaging, and the...
متن کاملEffect of Particulate Properties of Inhaled Dry Powder Formulation on Bioavailability, Dissolution Rate of Drug Particles and Rate of Drug Removal from the Body
Introduction: The use of pulmonary drug delivery as a non-invasive drug delivery system for the systemic treatment of diseases as well as the topical treatment of respiratory diseases is increasing. Among the various inhaled formulations, inhaled dry powders show advantages over the other forms of inhaled medicines due to high stability, bioavailability and ease of use. The effect of particle p...
متن کاملRecent advances in capsule-based dry powder inhaler technology
Pulmonary drug delivery is currently the focus of accelerated research and development because of the potential to produce maximum therapeutic benefit to patients by directly targeting drug to the site of pathology in the lungs. Among the available delivery options, the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse range of diseases. However, beca...
متن کاملPolymeric Nanocarriers And Their Oral Inhalation Formulations For The Regional Delivery Of Nucleic Acids To The Lungs
POLYMERIC NANOCARRIERS AND THEIR ORAL INHALATION FORMULATIONSFOR THE REGIONAL DELIVERY OF NUCLEIC ACIDS TO THE LUNGSbyDENISE SANTOS CONTIDecember 2013Advisor: Dr. Sandro R. P. da RochaMajor: Chemical EngineeringDegree: Doctor of PhilosophyGene therapy has attracted attention in the fields of medicine, pharmacy, andbionanotechnology due to the potential fo...
متن کاملPopulation pharmacokinetics of colistin methanesulfonate in rats: achieving sustained lung concentrations of colistin for targeting respiratory infections.
Colistin methanesulfonate (CMS), the inactive prodrug of colistin, is administered by inhalation for the management of respiratory infections. However, limited pharmacokinetic data are available for CMS and colistin following pulmonary delivery. This study investigates the pharmacokinetics of CMS and colistin following intravenous (i.v.) and intratracheal (i.t.) administration in rats and deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mediators of Inflammation
دوره 3 شماره
صفحات -
تاریخ انتشار 1994